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Abstract

In this data note we provide the details of a research database of 4831 adult
intensive care patients who were treated in the Bristol Royal Infirmary, UK
between 2015 and 2019. The purposes of this publication are to describe
the dataset for external researchers who may be interested in making use
of it, and to detail the methods used to curate the dataset in order to help
other intensive care units make secondary use of their routinely collected
data. The curation involves linkage between two critical care datasets within
our hospital and the accompanying code is available online. For reasons of
data privacy the data cannot be shared without researchers obtaining
appropriate ethical consents. In the future we hope to obtain a data sharing
agreement in order to publicly share the de-identified data, and to link our
data with other intensive care units who use a Philips clinical

information system.
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Introduction

The increasing use of clinical information systems on intensive
care units (ICUs) means that large amounts of patient data are
being generated as part of routine care. These data are stored in
electronic health records (EHR) and represent a valuable resource
with huge potential to improve patient care. Collaboration
between clinicians, researchers and industry stakeholders is
required to realise the potential of these data by developing
new methodologies and digital technologies. However, there
exists a more fundamental set of barriers to making the required
data available for secondary use and until these barriers are over-
come the ability to maximise patient benefit via data-driven
approaches will be limited. Here we introduce what we see as
the four main barriers, and then explain how the publication of
this data note (and its associated methodology for data curation)
contributes to overcoming these barriers.

Barrier 1: Data format

There is no standard format for storing intensive care EHR
data. This is mainly due to two factors: differences between the
proprietary formats used by different clinical information sys-
tems, and the high level of configurability of each system. EHR
data are stored in proprietary formats designed by the compa-
nies who provide the data collection and storage software. In
the intensive care units at our hospital we use the Philips ICCA
clinical information system (CIS), which is currently the most
widely deployed system across the NHS, with installation at 27
sites at the time of writing. Although the various available criti-
cal care CIS products do facilitate secondary data usage to some
extent, they were all designed primarily as charting systems and
therefore secondary use of the data is always a challenge. The
main issue with ICCA is the high level of configurability of the
system, meaning that data encoding can vary extensively between
sites but can also change over time at a single site. The conse-
quence of this configurability is that it can be challenging to locate
and harmonise even a single simple data element, such as heart
rate, for a cohort of patients over a period of time.

Barrier 2: Data linkage

There are two related issues around data linkage: 1) different
types of data from different sources within the hospital (or
beyond) need to be linked in order to make the data more useful to
researchers; and 2) data from different hospitals need to be
combined to increase data volume and therefore statistical power.

The first issue relates to the scope of individual data sources.
The ICCA database contains data collected routinely as part of
patient care on ICU, but does not contain any information about
what happened to the patient before or after their ICU stay. There-
fore, taken in isolation, the data in ICCA are of limited use for
research purposes. In order to make the data more useful they must
be linked to other datasets that capture diagnoses, past medical
history, outcomes etc. For this purpose we use data that is com-
piled locally for national audit by ICNARC (see Methods for
more details). Linkage of our ICCA data to the local ICNARC
data is a procedure that should be simple but is in fact challenging
because of several error sources relating to the way that the data
are collected. Developing a robust data linkage procedure has
required an intimate knowledge of the data. Exposition of this
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data linkage procedure is one of the main purposes of this paper,
because it will help other NHS trusts unlock secondary value
from their data.

The second issue relates to the fact that individual intensive
care datasets are relatively small. The general intensive care unit
at UHB has 20 beds and treats around 1300 patients each year.
To date the research database contains 4831 patients database and
this number will increase to ~ 6100 with the update at the end
of 2019. Most machine learning algorithms need more cases
than this to achieve good performance, hence the motivation to
link datasets across hospitals. Two US-based critical care data-
sets have achieved high volumes of data via different means.
MIMIC-IIT' contains around 60,000 ICU admissions, collected
from a single large teaching hospital with multiple units over a
period of 12 years. Conversely the eICU database’, produced by
Philips, contains around 200,000 patient stays from different hos-
pitals over a period of two years. The eICU data were collected
with purpose built software to facilitate high-frequency data col-
lection in a coherent format. Both the MIMIC and eICU datasets
are publicly available and their widespread use by researchers
will be hugely beneficial to patients. In the UK the CCHIC® has
work on linking data from multiple hospitals with different CIS
products. The challenges posed by linking data from the differ-
ent proprietary systems are significant, but the data has begun
to be used by researchers affiliated with the CCHIC. We feel
that focusing solely on data from a single CIS system (e.g. [CCA)
would significantly simplify the linkage process and that, given
the widespread deployment of ICCA across the NHS, there is
good potential to produce a large high-quality intensive care
research database by linking data from ICCA sites only. The
first stage in this process is to encourage and facilitate local pre-
processing of the data at each site.

Barrier 3: Data privacy

There is a growing consensus that the best way to unlock value
from data is to share them widely and openly with researchers.
Given the sensitive nature of medical data there are important ethi-
cal issues to consider in this context. However, we are ultimately
of the opinion that it is unethical not to use routinely collected
data to improve patient care. Therefore, addressing the issues
around data privacy requires the development of informa-
tion governance frameworks to facilitate data sharing while
ensuring transparency, trust and safeguarding of patient
data. The public data sharing agreements of MIMIC and the
elCU represent precedents in this area that the NHS should
pursue in order to unlock maximum value from their data.

In this data note we outline the steps we have taken to make our
routinely collected critical care data ‘research ready’ and pro-
vide some related resources via GitHub. Our intention is that this
will contribute to overcoming the above barriers, particularly by
facilitating other ICUs with the ICCA system to link and process
their data for secondary use. Curating our data using the methods
described here has expanded our capacity for clinical reporting.

“This is the publicly available component of the eICU dataset. The full dataset
held by Philips is much larger.
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We now regularly review a wide range of practices such as
proning, pressure area care and prescribing. In real-time we use
clinical dashboards to show the status of beds on the unit and
generate retrospective reports to study trends over time. We have
previously published work on the effectiveness of our clini-
cal dashboards in improving ventilation practice via behavioural
nudges*’. Since then we have continued to expand the capa-
bilities of the dashboards to support clinical decision mak-
ing and improve the quality of care. We have collaborated with
Philips on the development of dashboard intervention for acute
kidney injury®’ and have begun to explore machine learning
methods for the automatic classification of ward-dischargeable
patients®.

In the future, under the correct information governance frame-
work, linkage between several ICUs with ICCA could produce a
large high quality critical care research dataset. In the meantime
we encourage researchers to consider using our data by obtain-
ing the appropriate ethical consents (see Data availability) and
provide a brief summary of the data that would be available
to them.

Materials and methods

In this section we describe the processing that we have done so
far to make our routinely collected data ‘research ready’. We first
detail the two sources of our research data, then outline the pro-
cedure for linking data from these two sources and finally discuss
the importance of further processing, including data harmoni-
sation, to increase the general usability of these data. In the text
we refer to open-source SQL and Python scripts that we have
shared on our group GitHub account for readers wanting to process
their own data in a similar way.

Data sources

ICCA. Philips IntelliSpace Critical Care and Anesthesia infor-
mation system (ICCA) is a patient monitoring, documentation
and prescribing system used in the four intensive care units at
our hospital®. ICCA collects rich data about a patient’s condi-
tion, both via automated data streams from bedside monitors and
manually input by health care providers. These data include ven-
tilation details, medications and regular notes from medical staff.
The data are stored in a reporting database, which is managed
using Microsoft SQL Server and follows a star-schema that is
well documented by Philips.

The ICCA data are used by medical staff to monitor patients
while they are on the unit, and secondary usage has tradition-
ally focused on financial reporting within the trust to cap-
ture the value of care provided in each ICU stay. More recently
we have started to make use of the data for clinical reporting
and have established regular meetings to schedule work on
reporting requests from clinicians.

ICNARC. The Intensive Care National Audit and Research
Centre (ICNARC) is an independent national charity set up with

"The use of the same database by the four units is one source of error in the
data (e.g. erroneous transfers or patients being attached to the wrong unit
identifier).
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funding from the Department for Health and the Welsh Health
Common Services Authority in 1993. The Case Mix Programme
(CMP)’ started in 1994 is one of ICNARC’s main national
audits which today provides a comprehensive dataset across
268 critical care unit, covering 99% of all adult critical care
units in the in the UK and Northern Ireland. The CMP dataset
(currently version 3.1) consists of 209 data fields (as listed
Table S1, Extended data'), which overlap with most of the 34
data fields in the Critical Care Minimum dataset'' and include
the CCMDS subset of all 14 mandatory data fields used to gener-
ate the Healthcare Resource Group (HRG). This data is collected
for every patient that passes through a CMP participating ICU
and covers: basic demographic information; pre-admission
details including past medical history and reason for ITU admis-
sion (using the ICNARC Coding Method); severity during the
first 24 hours; number of days of organ support during their
ICU stay and outcomes on both leaving the unit and then final
discharge from hospital. The purpose of the audit is to pro-
vide a national resource for research and a local and national
benchmarking tool for individual critical care units.

Ward Watcher'” is the bespoke proprietary software (provided by
Critical Care Audit Ltd) we use in the trust to collect this CMP
dataset before sending it off to ICNARC. This software allows
us to collect extra information for each patient that is not sent
to ICNARC but is used within the Trust to generate detailed
custom reports. It has been configured to automatically gener-
ate new records when a new admission is entered into a bed
space on the Philips ICCA system and will pull data from the
flowsheet and completed forms in ICCA for manual verification.

Data linkage

A careful procedure is required to link datasets from different
sources to produce valid and usable data. Here we describe our
procedure for linking data from ICCA and ICNARC to produce
patient records with both routinely collected ICU data and out-
come descriptors. This method will be useful for any intensive
care unit the ICCA system who want to make secondary use of
their data in-house. The method is also detailed step-by-step in
an iPython notebook (see Script S1, Software availability').

The main challenge to overcome is that erroneous entries in both
datasets prevent a clean link. Without these errors the linkage
would be a simple case of joining data tables on a unique iden-
tifier corresponding to each ICU stay. Therefore, we must first
identify the erroneous entries and handle them according to the
type of error that produced them. This procedure would not be
possible without an intimate first-hand knowledge of the data and
they way they are generated. There are three stages in the data
linkage: first we handle the errors in the ICNARC data, then we
handle the errors in the ICCA data and finally we link the two
datasets together.

Handling ICNARC errors
Every patient record in the ICNARC data‘ is manually vali-
dated by the data team, so we can be sure that each record

‘Note that in some very rare cases there are stays which are excluded from the
ICNARC data.
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corresponds to a real ICU stay and contains valid patient data. In the
Ward Watcher software each ICNARC patient record links
to an identifier in ICCA called the encounterld. In theory the
encounterld uniquely identifies each ICU stay that has been cap-
tured in the CIS. However, there are various sources of error in
the ICCA encounterlds which break the one-to-one mapping with
patient records in Ward Watcher. For a small number of cases
the patient record in Ward Watcher points to an empty or corrupt
ICU stay in ICCA. In these cases we simply redirect the record
in Ward Watcher to point to the correct stay in ICCA. For
completeness we also create a new column to record the
erroneous ICU stay that was pointed to originally.

Handling ICCA errors

When patients are admitted to ICU, a record with a unique
encounterld is manually created in ICCA. All data associated
with that ICU stay is linked with this encounterld until the patient
is discharged from ICU, at which point they are manually removed
from the system. Since the admission and discharge actions
in ICCA are conducted manually and are not retrospectively vali-
dated, there is potential for a number of different types of error.
For example, patients can be admitted and discharged errone-
ously leading to phantom, nested or disjointed stays. All the
potential types of error are listed in Table S2 (Extended data'),
but there are broadly two classes of error, which are handled
differently: 1) multiple encounterlds corresponding to a sin-
gle ICU stay; and 2) multiple actual ICU stays with a single
encounterld. For the first class of error, we replace the duplicate
encounterlds with the original encounterld that was created
for that stay such that a single coherent record is produced. We
again produce a new column (specifically in the D_FEncounters
table) to record the duplicate encounterlds that have been
replaced. For the second class of error there is no simple
solution that could be robustly automated, so we leave these
cases for manual processing by individual researchers’. To
facilitate manual processing we introduce another column (to
the table D_Encounters) which specifies the type of error, if
any, associated with each encounterld.

Linking

Having handled the errors in both datasets, we now have one-to-
one mapping between ICNARC records and stays in ICCA. We
then extract all the CMP patient data from Ward Watcher in a
standard XML format and use it to produce another table in our
research database called D_Icnarc. This table has one row for
each ICU stay and one column for each of the 209 variables in
the CMP dataset, and links to other tables via encounterld and
ptCensusld:.

Data harmonisation
The configurability of ICCA means that the way interven-
tions are encoded can change over time. For retrospective

‘For example, researchers may wish to simply remove such cases, although
removal would likely introduce some bias since these cases usually represent
readmissions to ICU. Alternatively they may wish to manually split the stay into
two records.

“The ptCensusld in ICCA uniquely identifies spells in different units during the
same ICU stay.

F1000Research 2019, 8:1460 Last updated: 03 SEP 2019

studies it is necessary to search for medical concepts and variables
in the SQL database, which can be time consuming. We have
provided a well commented SQL script (see Script S2, Software
availability'’) for locating variables in the back end of ICCA
which should be useful for anyone working with the system.
In general the best strategy is to search on the longLabel for inter-
ventions and on the shortLabel for the corresponding attributes,
and then to calculate usage frequency to confirm that the
variable located is in use. In the future we hope to produce a soft-
ware tool for variable location that is usable by those without
knowledge of SQL or experience of working with ICCA.

Ethics

The full database is stored on a secure hospital server to which
only UHB data managers have access. We follow the guidelines
of the NHS Health Research Agency Confidentiality Advi-
sory Group'’. Curation of the data for internal audit and service
evaluation does not require research ethics approval, and for
projects that extend beyond routine reporting we produce de-
identified extracts of the required data with sensitive information
removed (names, dates of birth, addresses, rare diagnoses, etc.).

Dataset validation

The ICNARC data are validated internally at our hospital and
externally at the national office. Therefore, we can have con-
fidence in the validity of these data. The above procedure for
data linkage also removes erroneous entries in the ICCA data.
Users of the data must be aware that there are other sources
of error in CIS data. In particular, some data are entered manu-
ally (medical notes, free form laboratory results, etc.) and
are therefore vulnerable to corruption. Certain data fields are
populated automatically (e.g. from bedside monitors) but not
stored until a nurse confirms that the value is representative.
Such fields are therefore valid when recorded but subject to
missing values.

In Table 1 we provide a brief summary of 30 selected physi-
ological variables to give readers a feel for the type of data
contained in the database, including the frequency of recording of
different variables and the extent of missing data values. We also
provide a demographic summary of the patients represented in
the data (Table 2). Readers are referred to Supplementary Figures
S1-S4 (see Extended data'’) for further demographic information,
and Supplementary Figures S5-S7 for distributions of variable
values.

Future work

The curation of this data has highlighted to us the importance
of close collaboration between the people and teams responsible
for collecting, administering and validating the data. The more
that is known about an intensive care dataset—the way the data
are collected, the way they are affected by clinical practice, idi-
osyncrasies in the digital systems involved, operational factors—
the more value and information that can be extracted from them
and ultimately the more value we can deliver to patients. In
the future we will continue to improve and expand this research
database. In particular we will work with colleagues in NICU,
PICU and CICU to link data from the other intensive care units
in our hospital. We will also look to include datasets from
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Table 1. Summary of selected variables. ‘Record completeness’ is the percentage of ICU stays that contain at least one
recording of the variable. ‘Frequency recorded’ is the number of times the variable is recorded per hour for the ICU stays
that contain records of that variable. (Note: these frequencies are calculated over the full length of stay and so may be
distorted when a variable is measured only during a subset of the stay.)

Variable

Heart rate

GCS

Central Temperature
Peripheral Temperature
Respiratory rate

FiO2

PEEP

Airway

pO2

pCO2

Sp0O2

Non-Invasive BP Mean
Non-Invasive BP Systolic
Non-Invasive BP Diastolic
Arterial BP Mean
Arterial BP Systolic
Arterial BP Diastolic
Serum sodium

Serum pH

Serum potassium
Serum ionised calcium
Serum bicarbonate
Serum urea

Serum creatinine
Bilirubin

Platelets

Haemoglobin

Value,mean (+1s.d.)

85.88 (+19.06)
10.47 (£4.75)
36.10 (+1.80)
37.06 (+0.96)
18.43 (+11.19)
36.50 (+14.57)
8.02 (+2.75)
10.87 (+5.71)
5.62 (+1.41)
95.71 (+3.57)
83.91 (+19.37)
124.32 (+26.62)
65.87 (+18.17)
80.04 (+18.34)
119.99 (+24.73)
59.31 (+14.07)
137.27 (+5.57)
7.40 (+0.09)
4.38 (+0.60)
1.13 (+0.15)
25.65 (+4.84)
9.13 (+6.91)
105.55 (+89.35)
23.92 (+48.74)
246.14 (+151.25)
101.87 (+22.86)

Table 2. Demographic summary of the
cohort represented in the research dataset.

Variable
Total ICU stays

Gender, % female

Age, median years (IQR)
LOS, median days (IQR)
Readmission to ICU, # (%)

Mortality, # (%)

Value
4831
0.396

64.2 (50.8, 63.4)

2.9 (1.7, 5.4)
147 (3.0)
905 (18.7)

Record completeness, % Frequency recorded, mean (+1s.d.)

0.997 0.836 (+0.311)
0.993 0.284 (+0.133)
0.245 0.547 (+0.666)
0.984 0.292 (+0.123)
0.996 1.310 (£0.923)
0.841 0.922 (+0.789)
0.509 0.535 (+0.387)
0.991 0.671 (+0.297)
0.991 0.348 (+0.313)
0.991 0.350 (+0.312)
0.995 0.810 (+0.309)
0.834 0.254 (+0.367)
0.839 0.259 (+0.364)
0.838 0.259 (+0.364)
0.953 0.700 (+0.357)
0.954 0.698 (+0.356)
0.954 0.698 (+0.356)
0.999 0.454 (+0.452)
0.991 0.350 (+0.312)
0.999 0.451 (+0.451)
0.991 0.351 (+0.314)
0.991 0.622 (+0.492)
0.991 0.107 (+0.184)
0.990 0.107 (+0.184)
0.990 0.098 (+0.161)
0.992 0.111 (+0.337)
0.991 0.109 (+0.337)

across the trust to capture information about patient hospital
admissions outside the ICU.

We hope to work with external collaborators to develop a robust
method for de-identifying medical notes. Finally, we will explore
the possibility of linking with data from external NHS trusts
who also use ICCA in their ICUs. Eventually the expansion of
this research data will require more extensive data harmonisa-
tion to combine multiply-defined clinical concepts, and crucially
will require a bespoke information governance framework to
allow us to bring this data to researchers. We note that there is a
precedent for such governance agreements in other projects
referenced previously'=.
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Data availability

Underlying data

The sensitive nature of these data means that they are only avail-
able internally to UHB staff for the purposes of clinical audit and
service evaluation activities via the CAG guidelines. For exter-
nal researchers, ethical approval may be obtained via formal
application to the NHS Integrated Research Application System
(IRAS) for a specific research project. The IRAS website (www.
myresearchproject.org.uk) has full instructions; however,
interested parties are advised to contact the corresponding
author (christopher.bourdeaux @uhbristol.nhs.uk) to discuss the
application.

Extended data
Zenodo: UHBristolDataScience/data-note-extended-data https:/
doi.org/10.5281/zenodo0.3361287'.

This project contains the following extended data:
» Table S1: extended_tables/icnarc_cmp_dataset_properties.xlsx

o Table S2: extended_tables/icca_encounterid_error_types.xlsx

e Figure S1:
reasons.png

extended_figures/admisson_types_discharge_

e Figure S2: extended_figures/discharge_time_histograms.png
* Figure S3: extended_figures/reasons_for_admission.png
» Figure S4: extended_figures/stay_length_histograms.png
* Figures S5-S7: extended_figures/variable_hists[1-3].png

Extended data are available under the terms of the Creative
Commons Attribution 4.0 International license (CC-BY 4.0).
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Min Ji Lee
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Steve Harris

Bloomsbury Institute of Intensive Care Medicine, University College London, London, UK

The authors describe a curated dataset of 4831 adult intensive care patients treated at the Bristol Royal
Infirmary between 2015 and 2019. Two critical care data sources (ICCA and ICNARC) are linked and
curated to create a single comprehensive ‘research ready’ dataset. By publishing the curation process the
aim is to help external researchers make secondary use of their own routinely collected data.
Fundamental barriers to making the required data available for secondary research use are discussed.
Due to privacy constraints, the dataset is not fully published but external researchers may gain access
through a formal application process.

From the perspective of a novice data scientist and clinician this was an insightful and informative paper.
The data note explains the rationale, barriers and methodologies allowing transparency and
reproducibility for interested external researchers. Scripts outlining the dataset curation process were
easy to follow with step-by-step commentary. Making this information accessible provides the opportunity
for deeper understanding, in particular to those new to data science but curious about its potential. This is
important given the need for close collaboration between clinicians, researchers and industry
stakeholders to realise the full potential of routinely collected data to improve patient care.

The authors discuss how the publication of the data note and curation methodology contributes to
overcoming the barriers of data format and data linkage. However its role in mitigating barriers associated
with data privacy is less clear. Further explanation may be of interest as the tension between maintaining
data privacy and usability of data for researchers is highly relevant in this field.

To illustrate the barriers related to data format, the authors describe the challenges in locating and
harmonising a single data element such as heart rate within the Philips ICCA clinical information system
(CIS). The high level of configurability, where data elements can be renamed and relabelled between
sites, can prevent cross-site collaboration and sharing of these modifications using code review despite
using the same CIS. As these factors are beyond the researcher’s direct control, we would welcome the
authors’ perspective on how commercial companies could make this process easier.
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Is the rationale for creating the dataset(s) clearly described?
Yes

Are the protocols appropriate and is the work technically sound?
Yes

Are sufficient details of methods and materials provided to allow replication by others?
Yes

Are the datasets clearly presented in a useable and accessible format?
No

Competing Interests: No competing interests were disclosed.
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We confirm that we have read this submission and believe that we have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.
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Duncan Young
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General comments

Thank you for the opportunity to review this manuscript. | have reviewed the text and figures. However |
am not an expert on IT/computing and so have not commented on the details of the SQL and PYTHON
code in the repositories.

This paper describes the curation and linking of two databases containing information on patients treated
on intensive care units in Bristol. The first database (ICCA) contains detailed information on patients’ stay
in a single Trust’s intensive care unit collected as part of routine care. The second contains data
submitted on the same patients to a national comparative audit programme (ICNARC CMP). The
manuscript is well written and is clear.

Similar challenges have been addressed elsewhere (notably by the CCHIC teams in the UK and the
MIMIC-IIl team in the USA), though there is very little detailed information on the processes and problems

these teams encountered which has been published. This paper addresses some of the lack of detail.

The paper contains descriptions of the curation and linking processes. There are no data linked directly to
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the paper, as publishing identifiable patient data is not permitted. However, contact details are given to
allow interested researchers to explore obtaining appropriate permissions to interrogate the data.

In general the paper is informative and useful. It might benefit from a brief comment on how generalisable
these methods are to other patient groups where highly granular data are collected such as patients
treated in Emergency departments, or those undergoing surgery or invasive procedures.

Minor detailed comments

The sentence on ICNARC’s origin should probably be modified to read “The Intensive Care National Audit
and Research Centre (ICNARC) is an independent national charity originally set up with funding from the
Department for Health and the Welsh Health Common Services Authority in 1993” as funding now comes
from different sources.

“Barrier 3: Data privacy”. The MIMIC-IIl and elCU programmes are able to share data publically and they
are anonymised. There is no mention of this approach and the difficulties with true anonymisation, this
paper rather assumes data will be accessed using ethical approvals.

It might be helpful to emphasise that the XML file format that Wardwatcher software uses to export
ICNARC CMP data is common to all the different software packages used to collect ICNARC data, and is
not a software-specific format.

Use of intensive care as adjective (eg “...intensive care EHR data”) is common in published papers but is
probably best avoided.

Supplementary material graphics comments
Discharge reasons bar chart: No X axis labels.

® Discharge time histogram: X axis labels at 5h 33m 20s intervals. Why this unusual spacing?

® Stay length: Unusual to use logged Y axis for these graphs though | assume this is because of the
high frequency of single day stays.

®  Variables histogram 1: FiO, is fractional, not %. Units needed for heart rate, haemoglobin,
respiratory rate, SpO,, and blood pressures on X axes.

® Variable histograms 2&3: Attention to all X axis units as above. S| notation for partial pressures (PO
o, PCO,) uses a capitalised “P”.

Is the rationale for creating the dataset(s) clearly described?
Yes

Are the protocols appropriate and is the work technically sound?
Yes

Are sufficient details of methods and materials provided to allow replication by others?
Yes

Are the datasets clearly presented in a useable and accessible format?
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Reviewer Expertise: My expertise is in critical care and associated interrogation of routinely collected
healthcare data. | have no expertise in coding and have made this clear in the report. Please note the
wording below (“l confirm that | have read this submission and believe that | have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard”) has been added to my peer review
report by the publishers and was neither a part of the report | submitted nor do | have any control over this
addition.

| confirm that | have read this submission and believe that | have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.
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Professor Young - Thank you for taking the time to read and review our manuscript. We appreciate
your comments and will act on your suggestions to produce a revised version once we have
received the other peer review reports. We will then also provide a detailed response to your
review.
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